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Rationale / Need for Speed

• RT models required for generating simulated radiances from satellite,
ground-based and other platforms

• In retrieval applications, RT models also needed to calculate
Jacobians

• OSSEs and climate models require massive RT modeling over wide
spectral ranges

• RT calculations computationally expensive

• New generation LEO and GEO satellites expected to generate data at
rates current computing power is unlikely to match
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Why is RT Computationally Expensive?

• Wavelengths

– Spectral points where radiances must be evaluated

• Angles

– Computational quadrature angles (“streams”) at each spectral point

• A good solution should address BOTH the above considerations.
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Angles

• Separation of single and multiple
scattering

– Large number (sometimes >> 100) of
streams required to resolve
accurately anisotropy due to
scattering

– Computational burden ~O(M3)

– Large part of anisotropy of radiation
field captured by single scattering

– Single scattering calculation
computationally efficient

• Correlation between multi-stream
and two-stream calculations

Natraj et al., 2005
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Wavelengths

• Spectral binning

• Eigenvalue problem solution

• Radiance back-mapping
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Spectral Binning
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Spectral Binning
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Spectral Binning
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Spectral Binning
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RT Data Set
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Eigenvalue Problem Solution: PCA

• Data Set

– Optical properties in M atmospheric layers at N wavelengths

• Empirical Orthogonal Functions (EOFs)

– Eigenvectors of covariance matrix of detrended (mean removed) data set

– New basis to represent original data

– No loss of information

• Principal Component Scores/Weights

– Projection of original data set onto EOFs
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Eigenvalue Problem Solution: PCA

• PCA is an orthogonal transformation

• EOFs uncorrelated (original data set strongly correlated)

• EOFs sorted in order of decreasing variance accounted for

• First few (typically <= 4) EOFs capture > 99.99% of variance

• PCA gives insight into variability patterns in data sets
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Eigenvalue Problem Solution: PCA

• Mean and EOFs define much smaller set of PCA-projected optical
states compared to original data set

• Multiple scattering (MS) simulations performed only on reduced set

• Fast two-stream model approximates MS contribution at each
spectral point

• Correction factors developed based on RT calculations at PCA-
projected optical states

• Single scatter calculations performed at each spectral point
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Radiance Back-Mapping

• Radiances for mean bin values: Iexact, I2S

• EOF-perturbed ratios: Id+, Id-

• First and second order differences

• Corrected MS radiance
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PCA Flowchart

Spurr et al., 2013
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Broadband Radiances

Red: Two-stream; Black: PCA

Kopparla et al., 2016
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Zoomed in

Brown: Two-stream; Black: PCA

Kopparla et al., 2016
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Radiance-Based PCA (Liu, X., et al.)

• # independent pieces of information << # channels

• PCA performed on channel radiances

• Large number of atmospheric profiles used to generate a matrix of
spectral channel radiances (done offline)

• PCA produces EOFs (which are scenario independent)

• PC scores for specific scenario obtained using monochromatic
calculations at selected wavelengths
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Unified PCA

• Optical-PCA minimizes number of RT calculations per instrument
channel

• Radiance-PCA minimizes number of instrument channels for which
RT calculations are performed

• Two techniques are complementary

• Unified PCA model would combine advantages of both methods
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Unified PCA Example 1

Liu et al., 2019
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Unified PCA Example 2

Liu et al., 2019
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Future Work

• Vertical layering

• Spectral sampling

• Binning

• Polarization

• Unified PCA

• Remote sensing retrievals / climate models
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Backup Slides
24
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Overview of Existing Techniques I

• Correlated-k/Exponential Sum Fitting of Transmittances

– Widely used for atmospheric heating/cooling rate calculations

– Assume that optical properties spectrally correlated at all points along
optical path

– Only valid for homogeneous, isobaric, isothermal atmospheres

– Loss of correlation can introduce significant radiance errors
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Overview of Existing Techniques II

• Spectral Mapping

– No assumption about spectral correlation along optical path

– Perform level-by-level comparison of monochromatic atmospheric and
surface optical properties

– Combine only spectral regions that remain similar at all points along
inhomogeneous optical path

– Fine binning required to achieve high RT calculation accuracy

– Coarse binning provides significant reduction in radiance accuracy
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Overview of Existing Techniques III

• Asymptotic Methods

– Limited to study of semi-infinite media (e.g. optically thick clouds)

• Low Orders of Scattering

– Restricted to study of optically thin atmospheres

• Others

– Usefulness only proven for narrow spectral regions

– Many of these techniques rely on finite differences
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Vertical Grid

Top: Arbitrary grid; Bottom: Equal pressure thickness grid

Kopparla et al., 2017
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Aerosols in the PCA

Bottom: Bin averaging for aerosol properties; Top: Aerosols in the PCA

Kopparla et al., 2017



Page 3030 of  31

Binning Schemes

Kopparla et al., 2017
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Distribution of Residuals

Kopparla et al., 2017


